
____________________________________________
BACKGROUND

• Stable Matching (perfect matching with No unstable pairs). • Stability (no 
incentive for some pair of pariticpants to undermine assignment by joint action)
•    O(n), upper bound • Ω(n), lower bound • Ø(n), tight bounds
• O(n.logn) {from div&con) • Cubic T - O(n^3)
• Polynomial T - O(n^k) [Enumerate All Subsets of K Nodes] (e.g. are there k 

nodes such that no 2 are joined by an edge)
• Exponential T - O(2^n) [Enumerate All Subsets] (e.g. max size of indi. set)

• BFS - L0 {S} - L1 {neighbors of L0)++ , O(n^2) > O(M+N) • - when we 
consider node u, there are deg(u) incident edges (u, v) - total time processing 
edges is   
• An undirected G=(V,E) is  BiPartite if nodes can be colored red/blue such that 
every Edge has 1 red/blue end. • bipartite graphs cant cntain Odd length cycle.
• A graph is Strongly Connected if every node is reachable from s, and s is 
reachable from every node. • A DAG (Directed Acyclic Graph) contains no 
directed cycle, has a topological order/s.
FIND Topological Order of DAG: O(m+n) BY: maintain list of nodes with no i / o.
• Arrays are   Invertable

• Maximum Independent Set = !Minimum Vertex Cover
(Minimum Vertexes required to cover all EDGES)
____________________________________________
GREEDY 

+(Can be Optimal in Some cases)
+Interval Scheduling: 
Earliest start, Earliest finish, shortest interval, fewest conflicts
+Interval Partitioning:
(Lower Bound, Depth of set is max num contained any given time)
rooms in ^startTime, insert to room if free, otherwise create room
+Minimizing Lateness:
Shortest Procesing Time First, Earliest Deadln First, Smllst Slack

_Array, Binary Heap, d-way Heap, Fib Heap :: n^2, mlogn, mlog(m/n)n, m + nlogn
+MST:

+ Claim: A cycle & a cutset intersect in an EVEN number of edges.
Pfs. Cut/Cycle Properties; Exchange Argument (Contradiction)
+ Lexicographic Tiebreaking (for K&P): To remove the assumption that all edge 
costs are distinct: peturb all edge costs by tiny amounts to break any ties.

____________________________________________
DIVIDE & CONQUER

[+ MergeSort, Counting Inversions, Closest-Pair, [All O(nlogn) ]
+Sequence Alignment-
+MergeSort:: Divide O(1) ++ Sort 2T(n/2) ++ Merge O(n)
+Counting Inversions: v-A B C-v, >B (A) C>, [A}B,...]
+Strassen’s Matrix Mx: ([C11,C12,C21,C22]=[A11...]x[B11...])   
(C11 = (A11xB11)+(A12xB21)..)} (C11=P5+P4-P2+P6)
+Master Theorem: 

T(n) = a.T(n/b) + O(n^d), where a≥1, b>1.
• n is the size of the problem.
• a is the number of subproblems in the recursion
• n/b is the size of each subproblem (assumed same size)
• n^d is the work done outside the recursive calls (+ dividing+merging)

____________________________________________
DYNAMIC PROGRAMMING

>> Weighted Interval Scheduling [ O(nlogn) ]
“Greedy Algorithm fails with arbitary weights, Brute Force uses redundant sub-probs; ie Memorize”

>> Segmented Least Squares

[ O(n^3), improvable to O(n^2) by pre-computing ]

>> Knapsack

{ v-{i,t,e,m,s}-v , >-(weight)->, [[v][a][l][u][e]] :: OPT{p,k,d}, value=..  }
n+logW input. Ø(nW). Decision version of Knapsack is  NP-Complete.
|W| = log(W), 2^|W| = 2^logW = W, input=exponential :[

>> Sequence Alignment

1. OPT matches xi-yj, 2. leaves xi unmatched, 3. leaves yj unmatched

>> Shortest Path 
[ O ( n ^ 2 ) s p a c e , O ( m n ) t i m e ]

>> Bellman-Ford
“Can detect –ve cycles. Run for n iterations (instead of n-1), on termination, 
successor vars trace a –ve cycle if 1 exists”
[ O ( m + n ) s p a c e , O ( m n ) t i m e ]

____________________________________________
FLOW

>> Ford Fulkerson (Augmenting Path Algorithm)

(min-cut has to be through edges that are all 0(full))

[ O(m.f), f = maxFlow; each augmenting path found in at 
most O(m) time, increasing flow by at least 1 ]
[ O(nm^2), via E. Karp; define search order, scale ]

>> Edge Disjoint Paths
“Given a digraph, with s,t, find max number of edge-
disjoint (unique edges) s-t paths”

>> Disconnecting a Network

>> Bipartite Matching

 Max |Matching| = Max Flow
(Maximum Matching. Contains the largest possible number of edges)

>> Circulation with Demands, Lower Bounds

(D. saturates all edges leaving s and entering t)



>> Survey Design

>> Projection Design

____________________________________________
COMPLEXITY

“A problem is NP iff there exists a verifier for the problem that executes in polynomial time.”
“For a problem P, we can ignore the certificate, and just solve in polynomial time”.
(“A proof certificate can simply be a list, can return True or False.”)

“P. Decision Problems for which there is a poly-time algorithm.”
“NP. Decision Problems for which there is a poly-time certifier.”
“EXP. Decision problems for which there is an exponential-time algorithm. (((P)NP)EXP)”
“IF P=NP: ( (P=NP) EXP ), if True; Efficient algorithms for 3-Color, TSP, Sat, Factor (breaking RSA 
cryptography and potentially collapsing economy), but probably not.”
“CO-NP is NOT the complement of NP, it IS the SET of the complements of All problems in NP”
“3Sat is the satisfiability problem for CNF (conjunctive normal form) boolean formulas where all 
clauses have exactly 3 literals.”
“A ≡p B means that A and B are polynomially equivalent.”
“NP-Complete. A problem in NP such that every problem in NP polynomial reduces to it.”
“NP-Hard. A decision problem such that every problem in NP reduces to it.”

>> Proof NP-Completeness
1. Show :Prob.: is NP 

(Describe ‘Yes-Certificate’ and verifiable in P time)
2. Reduce known NP-Complete Problem to (≤p) :Prob.:
3. Show reduction is a Polynomial function.

>> Independent Set (≥p 3-Sat)

>> Weighted Independent Set (≥p Independent Set)
“Reduces from Independent Set with Weights set to 1”

>> Vertex Cover (≥p Independent Set)

>> Set Cover (≥p Vertex Cover)

>> Directed-Hamiltonian-Cycle (≥p 3-Sat)
“Hamiltonian-Cycle. given an undirected graph, does there exist a simple cycle 
that contains every node V.”

>> (Undirected) Hamiltonian-Cycle (≥p D. Ham-C)

>> Traveling Sales Person (≥p Hamilton-Cycle) (metric)

>> Longest Path (≥p Hamiltonion-Cycle)
“Claim. Hamiltonian Path ≤ p Longest Path (This construction of Hamiltonian 
Path leads to is a special case of Longest Path) 
We have a graph G that contains a Hamiltonian Path, if and only if G has a 
longest path of length |V |- 1.

G contains a Hamiltonian Path ⇒ G has a Longest Path of length |V |- 1.

Proof. Assume G is not a Hamiltonian path of size |V |, then it means G visits 
all vertices, which means there exists a path of which length is |V |- 1. This is 
exactly the definition of LP. __

G has a Longest Path of length |V |- 1 ⇒ G contains a Hamiltonian Path.

Proof. Conversely, if G forms a Longest Path of size |V |- 1, then we know that 
a simple path of length n- 1 must contain n vertices and hence must be a 
Hamiltonian Path. __”

>> Clique (≥p 3-Sat)
“A Complete Graph is called a Clique”

____________________________________________
INTRACTABILITY

>> Small Vertex Cover
[ Brute Force: O(k.n^(k+1)) ]

>> Independent Set on Trees (Maximum)
[ O(n), by considering nodes in post-order ]

(List and detach a Leaf), ( Delete new Leafs ), (Repeat)

>> Weighted Independent Set on Trees
[ O(n), visit nodes in postorder, examine each E once ]

“Indpendent set on trees. This structured special case is TRACTABLE because we can find a node 
that BREAKS THE COMMUNICATION among the subproblems in different subtrees.”


